
A New Way of Generating Reusable Index Labels
for Dynamic XML

P. Jayanthi, Dr. A. Tamilarasi
Department of CSE, Kongu Engineering College, Perundurai 638 052, Erode, Tamilnadu, India.

Abstract— XML now becomes a standard for the various
businesses in the world. Manipulation of the data and evaluating
the queries over the data in the XML documents is very
important. The indexing schemes use various labeling schemes
for the static and dynamic XML document. The performance of
the query system depends on the way of getting the data from the
document. The persistent labels assigned to the node will help to
get the structural information like ancestor-descendant
relationship among the nodes of the XML data while querying.
In the case of dynamic XML, the document allows the operations
like inserting, deleting and updating nodes in the XML
document. Particularly for the frequently changed documents,
the labels assigned to the nodes will be affected. Most of the
existing labeling schemes require the re-computation while
changes take place. The proposed system NSAX(New Scheme
for Accessing XML) will avoids this problem and also provides
the way of using the deleted labels. Moreover, the system
provides a way of authentication to the documents. The access
control label is assigned to the nodes such that it describes the
roles that can access the nodes as well as the level of the nodes in
which the nodes present in the document. The experimental
results show that the improvement in the performance of the
system.

Keywords— access control, dynamic XML, persistent labeling,
querying, re-computation.

I. INTRODUCTION

XML (eXtensible Markup Language) plays an important
role in powering the revolution of the data. Its semi structured
nature has a power to express complex data as well as simple
enough to understand. The format of the XML in the World
Wide Web is useful for representing and exchanging the
information. By using the appropriate software systems, the
data can be manipulated and queried.

The indexing involves with various numbering and labeling
schemes. For each of the node, the unique persistent label
value as an index will be assigned in some of the labeling
systems. In the case of dynamic XML, the nodes can be
inserted, deleted and updated. For these changes the re-
computation of the labels of existing nodes is needed for every
change which takes unnecessary time of the processor. In
these cases, instead of evaluating the query the re-computation
of the labels will occupy most of the time in the query
processing. The proposed method does not require the re-
computation of the labels of the existing nodes in the XML
document. The parent-child relationship can be inferred from
the label values of the nodes. It is useful for structural query
processing [5]. It saves the time and space.

In this paper, section 2 describes the existing schemes of
labeling and its limitations. Section 3 describes the new
proposed system and its details. Section 4 shows the results

and performance analysis of the experimentation involved in
the proposed system. Finally, the conclusion and future work
of the proposed system is described in Section 5.

II. RELATED WORK

A lot of methods have been used for querying over the
XML document. A few examples of labeling and numbering
of the nodes falls in the categories like Path indexing, Node
indexing and structural indexing, etc. The strengths and
weaknesses of several node labeling schemes have been
discussed by Haw Su - Cheng and Lee Chien – Sing [2]. The
comparison of various labeling schemes for ancestor queries
have been discussed by Kaplan, H., Milo, T. and Shabo, R [8].
The re-computation of the labeling problem is dealt in the
works of Tatarinov, Viglas, Beyer, Shanmugasundaram,
Shekita and Zhang [13] and Li and Moon [9]. The proposed
methods by Meuss and Strohmaier[10], Grust[4] , Amato,
Debole, Rabitti and Zezula[1] have been using path indexing.
These are does not providing the way for the update operation
in the XML document.

Dong Chan An and Seog Park [17] proposed a method in
which a Role-Based Prime Number is used for accessing the
nodes. But it need not be a prime number in the proposed
scheme NSAX. The numbering methods proposed by Cohen,
Kaplan and Milo [3], used a specific code for each node in the
document. In the double-bit growth approach, the binary code
will be doubled by adding sequence of zeros. Similarly,
Tatarinov, Viglas, Beyer, Shanmugasundaram, Shekita and
Zhang [13] used Dewey prefix-based numbering scheme. The
parent-child relationship can be found in the Li and Moon [9]
system uses range information. In the system PBi Tree
proposed by Yu, Luo, Meng and Lu [14], the preserved codes
are used. If the reserved code is not enough then renumbering
is needed. When the changes are made in the document, it will
affect the label values of the existing nodes. The addition and
deletion of the nodes in the XML document makes a problem
in creating persistent labels of the nodes. The performance of
the query processing is increased by indexing methods [7].
The XML document for a course is shown in Fig. 1.

Fig. 1: XML document for a course

P.Jayanthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 602-606

602

The problem due to updating is shown in the Fig. 2. The
semi structured nature of the XML document allows the user
to add or delete the nodes based on the schema. The order in
which the siblings to be maintained is not described in the
schema. This will leads to updating problem in the labeled
document.

Fig. 2: The effects of updating nodes

But the order of the siblings or child nodes are very

important one in the querying process i.e. especially in the
structural queries. For example, to get the result of the query
such as “Getting the author of the 5th subject in the course
document” needs the information about the order of the
siblings. The different methods provided in the existing
systems are used to overcome this updating problem. But the
index size will be increased when the size of the document is
increased. The frequently changing document and large size
document needs more time for re-computing the label values
rather than processing the query. For generating the persistent
labels the various combinations of the letters, digits and binary
numbers are used. The proposed system NSAX will provide a
solution of this re-computation problem as well as an access
method of different nodes. The proposed scheme is described
in detail in the following sections.

III. NSAX – PROPOSED SYSTEM

The numbers are used in the existing systems like Amato,
Debole, Rabitti and Zezula[1], Cohen, Kaplan and Milo [3],
Tatarinov, Viglas, Beyer, Shanmugasundaram, Shekita and
Zhang [13], Li and Moon[9], Yu, Luo, Meng and Lu[16],
Grust[4] for generating the labels of the XML nodes. Some
others were used letters in their system like Wang, Jiang, Lu
and Yu [14] for labeling scheme. The combination of letters
and digits were used in the system LSDX (Labeling Scheme
for Dynamically updating XML Data) proposed by Maggie
Duong and Yanchun Zhang [18]. In general, by providing the
persistent unique labels to the XML nodes will allow the user
to insert, delete or update the nodes easily. The persistent
labeling scheme should avoid the re-computation. In the
proposed scheme NSAX, the digits (0-9), uppercase letters
(A-Z) and the lowercase letters (a-z) are used to generate the
labels.

A. Algorithm used in NSAX

Definition of a Label of a node (LV): The persistent label of
a node includes its self label value and the access control label
value which describes the accessibility mode of that node in

the document. The access control label also describes the role
of the user to which the nodes can be accessed.

LV(i) = 0 if “i” is the root node of the document
 = LV(parent) +self-labeli + access control labeli
where, LV(parent) = label value of the parent node of the

ith node
self-labeli = self-label of ith node includes the sibling value

of ith node retrieved from the sequence in (1) and
access control labeli=Access control label of ith node is

retrieved from the accessibility matrix of the document.
This NSAX is a stack based recursive algorithm which

traverses the document in the depth first traversal order and
assign the labels. The following part of the algorithm shows
how to generating persistent label for a node.

The following (1) gives the sequence of values used for

counting the siblings of a node.
……,000z,001,……,00y,00z,01,…...,09,0A,…,0Z,
0a…….. ,0y,0z,1,2, ….….9,A,B,C,...Z.
a,b,c,d,..,z,z0, z1,.…z9,zA,…….,zZ,
za …….., zz, zz0, zz1,…..….zz9, zzA,…… (1)

Suppose the string “001” is used for a node, then the

previous sibling will have the sequence string “000z”. Sorting
these strings, the string “000z” becomes first. Thus the
increased order of the siblings will be maintained. Similarly,
the string “zzz” is used as a sequence count of the node, then
it’s next sibling will have the sequence string “zzz0” and so
on. The problem is raised only when the digits are used for
numbering the labels. But here the combination of the letters
and digits will avoid that re-computation problem.

B. Maintaining Sibling Order

The sequence shown in (1) will produce enough number of
labels and can be expanded at any point in any large size
document. Using both lowercase, uppercase letters and digits
will produce enough number of label values with minimum
storage. Thus it will improve the performance of the query
processing system. Using the sequence for assigning the label
of the siblings, the increased order of the siblings will be
maintained. i.e. the sorted of the labels of the siblings will be
maintained always.Algorithm used in NSAX

Procedure Generating_Label (node i, parent p, sibling n)
Input:
 node i to be labeled in the XML document
 parent p denotes the parent node of the ith node
sibling value of ith node according the parent node p
role matrix of the document
access control label matrix of the document
Output:
XML document with labeled nodes
Begin_Generating _Label:
Self-Label(i) =sibling count(i);
access control label(i)=select from accessibility control label matrix;
LV(i)=LV(parent)+Self-Label(i)+
 access control label(i);
For each child node (j) of node (i)
Begin-For:
 Generating_Label(j, p, n);
End_For:
Return XML document with labeled node(i)
End_Generating_Label:

P.Jayanthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 602-606

603

C. Updating Problem – Solution

The existing systems like Amato, Debole, Rabitti and
Zezula[1], Cohen, Kaplan and Milo [3], Tatarinov, Viglas,
Beyer, Shanmugasundaram, Shekita and Zhang [13], Li and
Moon[9], Yu, Luo, Meng and Lu[16], Grust[4] have the
problem of re-computation of labels. i.e. these methods do not
have the provision of updating the XML nodes with new label
values. In the proposed scheme NSAX, this problem is
avoided.

The support of updating the nodes will be explained with
the Fig. 3. To understand the formulation of self label of a
node, the letters and digits except the last digit will be
considered. The last digit of the label of a node is used for
describing the accessibility of that node. It will be described in
the next section. Suppose for the XML document shown in the
Fig. 1 is updated. i.e. new ‘subject’ node is added as the first
child node of course. In that case, the string “0z” obtained
from (1) will be used as the position of the new ‘subject’ node.
Thus, the self label of the new ‘subject’ node will become
“0z”.

Next, a new ‘author’ node is added in between the siblings
of the existing document. The position of the new ‘author’
node is to be found first. According to the sequence given in
(1), there is no string between the strings “1” and “2”. In
those cases the combination of the label of first sibling node
and the string “0” will be used. So the modifications due to
the operations like insertion, deletion and updating nodes will
not affect the sorted order of the siblings. Thus, the persistent
labels need not be changed for the changes in the document
when performing these operations.

Fig. 3: Updating XML nodes using NSAX

D. Access Control of the nodes

To accessing the nodes the role based prime number is used
in [17]. But in NSAX, for accessing the XML document the
relationship between roles involved in the business and the
levels of the document are determined. i.e. the accessibility
control label matrix of an XML document uses the digits
which determines the roles who can access that nodes as well
as the level of the nodes. Suppose for a document D, the roles
R1, R2, R3,.. Rm are assumed. Along with levels the list of
roles that can access the nodes in that level is combined. The
access control label of a node can be calculated using the
matrices given in the Table I and II.

TABLE I
THE SAMPLE ROLE MATRIX

Role Name
List of nodes can be

accessed
List of levels in which

the node presents

R1 – CEO Course\subject\author
Course\subject\title
……………….
……………….
Course\syllabus\book
Course\syllabus\title
……………….
…………….....

0,1,2

R2- Director Course\subject 0,1
……… ……… ………
Rm-Student Course\title 0,1

TABLE III
THE SAMPLE ACCESSIBILITY CONTROL LABEL MATRIX

Access Control
Label Used

List of roles can
access the node

Levels of the
node

0 R1, R2, R3, R5 0,1,2
1 R1, R2, R3, R5 0,1,2
2 R1, R2, R3, R5 0,1,2
3 R1, R2, R5 0,1,2
5 R5 0
6 R3, R5 0
7 R1, R5 0

IV. EXPERIMENTAL RESULTS

The NSAX system has been implemented in Java 2 JDK
5.0. Xerces SAX parser is used to manipulate the XML
document. The data sets which are similar to the real world
applications are considered for the experimentation. So
XMark datasets [12] are chosen. They are standard and
balanced one. The scaling factors 0.01 to 0.05 are used to
generate the different XML documents of different sizes.
Genuine Intel CPU, 2140 @1.60GHz, 2.49 GB of RAM on
Windows XP system with 75GB hard disk is used for
conducting the experiments.

A. Index Size – Analysis

The properties of the XMark data set generated are shown
in the Table III.

TABLE IIIII
PROPERTIES OF DOCUMENTS USED

Sl.
No.

Scaling
Factor

Document Size
(MB)

Number of
Nodes

1 0.01 1.2 17132
2 0.02 2.3 33140
3 0.03 3.4 50266
4 0.04 4.7 67902
5 0.05 5.6 83533

The index is generated by using the NSAX scheme. To
show the effectiveness of the system, a comparison is made
with various schemes like LSDX [18], GRP Scheme [19], SP
Scheme [3] and shown in the Table IV. It clearly shows that
the documents will have the index with reduced size using
NSAX.

P.Jayanthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 602-606

604

TABLE IVV
COMPARISON OF THE SIZE OF THE INDEXES

Document
Size (MB)

Index Size used (MB)

NSAX Existing LSDX GRP SP

1.2 0.16 0.24 0.17 0.64 1.36
2.3 0.34 0.44 0.41 1.20 4.64
3.4 0.56 0.65 0.76 2.00 10.24
4.7 0.82 0.86 1.17 2.72 17.92
5.6 1.09 1.16 1.63 3.44 27.04

 To know the performance of the system, a graph is drawn

using the results of the comparison of the size of the indexes
using GRP[19], Existing Method[17], and NSAX schemes. SP
Scheme is not included in the graph because it needs a very
large amount of space. The final graph obtained is shown in
the Fig. 4. It is clear that the proposed scheme will reduce the
space, when compared with the GRP, Existing Method and
LSDX schemes respectively.

Fig. 4: Comparison of the index sizes

B. Time Analysis for generating labels

The time taken for the various schemes will differ
according to the algorithm used. To know the performance of
the system, a comparison is made among the various systems
like LSDX and NLSX schemes. The results of the comparison
are shown in the Table V.

TABLE V
COMPARISON OF TIME TAKEN FOR GENERATING THE LABELS

Sl.No.
Document
Size (MB)

LSDX
(sec)

NSAX (sec)

1 1.2 1.09 0.250
2 2.3 1.56 0.375
3 3.4 2.25 0.500
4 4.7 2.79 0.609
5 5.6 3.28 0.687
6 6.9 3.90 0.812
7 8.0 4.54 0.938
8 9.2 5.09 1.047
9 10.3 5.59 1.203
10 11.4 6.18 1.297

The graph obtained for the same is shown in the Fig. 5.
From the analysis, it is known that 77% of the time is reduced
by using NSAX for generating the labels.

Fig. 5: Comparison of the time taken by various schemes

C. Reusability of the labels

The reusability of the labels of the deleted leaf nodes and
the sub trees can be tested. The position of the node to be
deleted is chosen randomly. Then at the deleted positions the
new leaf nodes or sub trees are inserted. The result is shown in
Fig. 6.a and 6.b

Fig. 6.a: Comparison of the index using NSAX before updation

For each time, 10000 labels are generated by the deletion
operation. After insertions and deletions the size of the index
of the documents were tested. The proposed system does not
increase the size of the indexes in any of the cases.

Fig. 6.b: Comparison of the index using NSAX after updation

P.Jayanthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 602-606

605

D. Access Control Scheme

The accessibility of the node will be checked with the help
of two matrices namely, Role Matrix and Access Control Label
Matrix. The level of a node is explicitly described in the
existing scheme [17]. But in NSAX, a single number is enough
for describing the roles as well as the levels the user can access
the nodes in the XML document. And also the changes in the
roles can be done easily with NSAX. To query the XML
document, the content of the nodes and the path expression is
stored in Oracle database format. The corresponding label
value is also stored along with them. From that the system first
gets the role of the user. The query will be given interms of
XPath expression. If the access control label matrix permits,
then the content of the nodes against the given XPath
expression is retrieved by searching the label values of the
nodes.

V. CONCLUSION AND FUTURE WORK

The persistent labeling schemes do not have the re-
computation of the existing nodes when the changes take
place. To avoid this problem, for generating the labels the
digits, lowercase and uppercase alphabets were used.
Moreover, the results shows that the size of the index
generated and time taken for generating the labels will be
reduced when compared to the existing system. Also the access
control scheme is introduced which is based on the Role
Matrix and the Access Control Label Matrix of the document.
Thus the performance of the system will be improved. In
future, accessibility of the clustering of the nodes and ranking
the elements may also be added for further improvement.

REFERENCES
[1] Amato, G., Debole, F., Rabitti, F. and Zezula, P. , “Yet Another Path

Index for XML Searching”, in Proceedings of ECDL 2003 Research and
Advanced Technology for Digital Libraries, 7th European Conference,
Trondheim, Norway, 2003.

[2] Haw Su-Cheng and Lee Chien-Sing, “Efficient Preprocesses for Fast
Storage and Query Retrieval in Native XML Database”, IETE Technical
Review, Vol. 26, Issue 1, Feb. 2009.

[3] Cohen, E., Kaplan, H. and Milo, T., “ Labelling dynamic XML trees”, in
Proceedings of PODS 2002.

[4] Grust, T., “Accelerating XPath Location Steps”, in Proceedings of the
2002 ACM SIGMOD

[5] http://www.w3.org/TR/xquery/.

[6] IBM Corporation XML data generator
http://www.alphaworks.ibm.com/tech/xmlgenerator, International
Conference on Management of Data, Madison, Wisconsin, ACM 2002.

[7] Kaelin, M. , “Database Optimization: Increase query performance with
indexes and statistics”, Tech Republic, 2004.

[8] Kaplan, H., Milo, T. and Shabo, R, “A Comparison of Labelling
Schemes for Ancestor Queries”,
http://www.math.tau.ac.il/~haimk/papers/comparison.ps

[9] Li, Q. and Moon, B., “Indexing and Querying XML Data for Regular
Path Expressions”, in Proceedings of VLDB 2001.

[10] Meuss, H. and Strohmaier, M. C., “Improving Index Structures for
Structured Document Retrieval” in 21st BCS IRSG Colloquium on IR,
Glasgow, 1999.

[11] Michael Ley. DBLP database web site. http://www.informatik.uni-
trier.de/~ley/db/, 2003.

[12] Schmidt, A., Waas, F., Kersten, M., Carey, J. M.,Manolescu, I. and
Busse, R., “XMark: A Benchmark for XML Data Management”, in
Proceedings of VLDB 2002.

[13] Tatarinov, I., Viglas, S., Beyer, K., Shanmugasundaram, J., Shekita, E.
and Zhang, C., “Storing and Querying Ordered XML Using a Relational
Database System”, in Proceedings of SIGMOD 2002.

[14] Wang, W., Jiang, H., Lu, H. and Yu, X. J., “PBiTree Coding and
Efficient Processing of Containment Joins”, in 19th International
Conference on Data Engineering, 2003 Bangalore, India.

[15] XMARK: The XML-benchmark project. http://monetdb.cwi.nl/xml
2002.

[16] Yu, X. J., Luo, D., Meng, X. and Lu, H., “Dynamically Updating XML
Data: Numbering Scheme Revisited”, in World Wide Web: Internet and
Web Information System, 7, 2004

[17] Dong Chan An, Seog Park (2008): Access Control Labeling Scheme for
Efficient Secure XML Query Processing, in KES 2008, Part II, pp 346-
353, Springer –Verlag Berlin Heidelberg, 2008.

[18] Maggie Duong and Yanchun Zhang, “LSDX: A new labelling scheme
for dynamically updating XML data”, in the Proceedings of 16th
Australasian Database Conference, Volume 39, 2005

[19] Jiaheng Lu, Tok Wang Ling, “Labeling and Querying Dynamic XML
Trees”, APWeb 2004

P.Jayanthi et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (2) , 2011, 602-606

606

